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INTRODUCTION 2 

THE APPARENT absorptance of a cavity, a,,,,, is defined as 
the fraction of energy flux emitted by a black-body surface 
stretched across the cavity opening that is absorbed by the 
cavity wal1s.J Because of multiple reflections among the cav- 
ity walls, c(,,,,~~ will exceed the surface absorptance, CI. Such 
an effect, called the cavity effect, is employed in the design 
of receiver/reactors for solar furnaces to capture the solar 
radiation. The cavity effect for partial enclosures has been 
analyzed for specific configurations, among them: cylin- 
drical, conical, spherical, rectangular-groove and V-groove 
cavities [l-3]. These problems have been solved for specu- 
larly and diffusely reflecting cavity walls. Little information 
is presently available which describes the particular case of 
specularly reflecting spherical cavities with a circular 
opening. Such cavities offer several intriguing advantages 
over the conventional heavily insulated enclosures made of 
ceramic materials when applied for solar furnace receivers 
at moderate to high (2000 K and above) temperatures 141. 
Specular spherical geometries have also significant import- 
ance in modeling radiant heat transport through the void 
spaces across a porous material, and the apparent surface 
emittance was analytically derived for a differential element 
of a sphere [5,6]. In the present study, the apparent absorpt- 
ante of a spherical cavity with a circular opening is calculated 
for cavity walls having both specular and diffuse reflectance 
components. 

FIG. I, Spherical cavity with a circular opening. 

For cavities showing some specularity a Monte-Carlo ray- 
trace simulation was used. This method has been widely 
used for the analysis of radiative transport [S]. It consists of 
following probable paths of a large number of discrete bun- 
dles of energy being diffusely and uniformly emitted from 
the circular opening. With Cartesian coordinates centered 
at the center of the spherical cavity and its x-axis normal to 
the circular opening, as shown in Fig. 1, the equation of the 
sphere of unit radius is 

ANALYSIS 

The space inside the cavity is assumed to be a non-par- 
ticipating medium. The walls of the cavity are taken to be 
isothermal at 0 K+ opaque (n = 1 -p), gray, and their reflec- 
tivity is subdivided into diffuse and specular components, pd 
and p”, respectively [7] (p = @‘+p*). Radiation entering the 
cavity opening from an external source is assumed to be 
uniformly and diffusely distributed. For the case of pure 
diffusely reflecting walls (p”/p = 0), the apparent cavity 
absorptance, t(,,,,,yr is given by [3] 

G: 
-_ 

s(cKvsiy - 1 -i(l -a)(1 i”cos@) 

where a is the surface absorptance and @ the opening cone 
angle defined in Fig. 1. 

t Present address : Paul Scherrer Institut, W~renlingen 
und Villigen, CH-5232 Villigen PSI, Switzerland. 

$ For gray-walled cavities, the apparent absorptance is 
equivalent to the apparent emittance, defined as the ratio of 
the energy flux emitted by the cavity walls streaming out of 
the cavity opening to that streaming out of a black-walled 
cavity [I, 21. 

F(x,y,z) = xZ+yZ+22-1 = 0. (2) 

Our incident ray, or energy bundle path, enters the cavity 
through the opening at point P,(x,,y,,cos @) and has a 
direction parallel to the unit vector u = u,jfuzjfu,k. The 
equation that gives the coordinates of a generic point P, on 
the ray is, in vectorial notation 

with 

(P,-P,)xu=O (3) 

Ill/ = 1. (4) 

Since the circular opening emits in a diffuse and uniform 
manner, the number of energv bundles emitted from a certain 
ring of radius r on the opening are proportional to its area 
2xr dr, and their direction is chosen randomly from a set 
that is weighted according to a cosine distribution. Thus 

u*k=cos(sin-‘,/%‘,)=J(I--1,) (5) 

J(.x: ty:) = sin @JW, (6) 
where 9, and Ye2 are random numbers drawn from a uni- 
formly distributed set between 0 and 1. Once we know the 
direction of an individual bundle, we can determine the point 
of incidence on the spherical cavity. Let P,(x,,y,,zJ be the 
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point of inters~tion of the ray with the cavity walls. Its 
coordinates can be obtained by solving the system of equa- 
tions (2) and (3). Here, a random choice, depending on 
the surface absorptance. determines whether the bundle is 
absorbed or reflected. If absorbed, a count is recorded and 
its history is terminated. If reflected, another random choice, 
depending on p’/~), will determine whether the reflection is 
specular or diffuse. The direction of the reflected ray is ex- 
pressed accordingly by the vector equation : 

for specular reflection [9] 

r = u-2(n+u)*n; (7) 

for diffuse reflection 

r-n = J(l-a,) (8) 

where II and r are unit vectors along the incident and reflected 
rays, n the unit vector along the normal at P, pointing into 
the reflecting surface, and gX is another random number 
between 0 and 1. The equation that gives the coordinates of 
a generic point P, on the reflected ray is, in vectorial notation 

with 
(P,-Pz)xr=O (9) 

jrj = 1. (10) 

Again, we can determine the new point of incidence on the 
cavity and repeat the algorithm to follow the path of the 
energy bundle until absorption takes place. Eventually, 
each bundle of energy will have either been absorbed by the 
cavity surface after multiple reflections or have left through 
the opening. This procedure is repeated for a large enough 
sample of energy bundles so that the results are statistically 
meaningful. 

RESULTS 

Using a sample of 100000 rays, we have counted the 
number of absorptions by the cavity walls and divided by 
the total number of bundles of energy emitted. The accuracy 
of the numerical computation was checked against the exact 
analytical solutions available for the specularly reflecting 
conical cavity and the diffusely reflecting spherical cavity 
[2, 31. The results, believed to be accurate within 5%, are 
presented in Fig. 2 as a function of the opening angle if, for 
various values of surface absorptance CI. The data points 
were calculated by the Monte-Carlo method for the pure 
specular reflecting walls (p’ip = 1). The lines drawn in associ- 
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FIG. 3. Apparent absorptance as a function of the cone- 
opening angle for a surface absorptance of 0.5 and p’jp = 0, 

0.5, t. 

ation with them are the results of the exact analytical solution 
for the pure diffuse case (p’jp = 0). 

As expected, the apparent absorptance, c(,,,,,, approaches 
unity as the opening angle becomes smaller, and decreases 
monotonically approaching the surface absorptance as the 
opening angle becomes bigger. However. in contrast to the 
results for conical, cylindrical, rectangular-groove and V- 
groovecavities. the specularly reflecting spherical cavity does 
not always give higher values of rcavlry than does a diffusely 
reflecting one. For CI = 0.1, the contrary is true for every 
opening angle, and the difference can be as high as 25% for 
small opening angles. For 3~ = 0.3, 0.5, 0.7, and 0.9, the 
values of ~~~~~~ for specular refIectance alternates the curve 
for the diffuse case, giving generally higher values when 
60” < 4, < 90”. Similar to the results for cylindrical cavities 
[7]. the curves for p’ip = 0.5 (shown in Figs. 3 and 4 for 
surface absorptances of 0.5 and 0.1, respectively) lie half- 
way between those for purely specular and purely diffuse 
reflectance when the surface absorptance is high. At lower 
values of surface absorptance, the curves for p’/p = 0.5 lie 
closer to those for diffuse reflectance. 
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FIG. 2. Apparent absorptance as a function of the cone- opening angle for a surface absorptance of 0. I and p”/~) = 0, 
opening angle for various values of the surface absorptance. 0.5, 1. 
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1. INTRODUCTION 

NUMEROUS technical problems involve the movement of a 
phase boundary induced by the diffusion of energy or mass. 
Most common examples including the conduction of heat 
are the solidification of casting, the thawing of permafrost, 
the freezing of foods, aerodynamic heating of missiles and 
in many other geophysical problems. Mathematically, these 
problems belong to so-called moving boundary problems in 
which the moving interface divides the relevant field into at 
least two regions. Such problems become nonlinear because 
the location of the moving interface is not known a priori. 
Due to this nonlinearity analytical solutions can be found 
only in limited situations, for example, as in Neumann’s 
solution for a one-dimensional problem. Also, the vast 
majority of theoretical work in this area has been limited to 
the analysis of one-dimensional moving boundary problems. 

To date, several methods are available for the solution of 
two-dimensional moving boundary problems. In most cases, 
the emphasis has been placed on a general class of two- 
dimensional solidification or melting problems, and the fol- 
lowing discussion is thus given in the context of this kind 
of system. Surveys of the early literature with numerous 
references dating from the time of Stefan are given in Crank’s 
[l] comprehensive book ; in Fasano and Primicerio [2] is 
contained an up-to-date account of mathematical devel- 
opments and of wide ranging applications to problems in 
physical and biological sciences, engineering, metallurgy, soil 
mechanics, decision and control theory, etc. The present 
note proposes a relatively simple numerical method for the 
solution of multi-dimensional moving boundary problems 
on extending and modifying Boadway’s (31 transformation. 
The idea in the present scheme is a particular case of the 
curvilinear transformation, that is one in which the depen- 
dent variable is interchanged with one of the space variables. 
The variation of this method, the so-called Isotherm 
Migration Method (IMM) was proposed by Chernousko [4] 
and independently by Dix and Cizek [5] and subsequently 
developed and extended to two space dimensions by Crank 
and co-workers [6-91 and Turland [lo]. The use of coordinate 

transformation for immobilizing the boundary in the case 
of two-dimensional moving boundary problems has been 
reported by some of the authors. For example, Furzeland 
[I l] used body-fitted curvilinear coordinate transformation 
for transforming a curve-shaped region into a fixed rec- 
tangular domain; Saitoh [12] and Duda et al. [13] discussed 
several problems using polar coordinates together with the 
immobilization transformation. More recently, Sparrow and 
Hsu [14] used coordinate transformations for a control vol- 
ume formulation. Finally, in their formulation, Gupta and 
Kumar [15] gave a method based on coordinate trans- 
formation which transformed the time varying domain into 
an invariant one. 

In our approach, we propose a relatively simple numerical 
method for the multi-dimensional moving boundary prob- 
lems by an independent variable interchange. The present 
scheme is an extension of Boadway’s [3] transformation to 
time-dependent moving boundary problems in a two or more 
dimensional case. In our method, not only the shape of the 
moving interface but also that of the fixed boundary can be 
selected arbitrarily, thereby allowing its application to more 
practical situations regardless of the geometry of the problem 
considered. 

2. THE EXTENSION OF BOADWAY’S 
TRANSFORMATION 

For the purpose of illustration, governing equations are 
presented for the two-dimensional case, since the extension 
to three dimensions is accomplished in a similar manner. 
Hence, a particular case of the curvilinear transformation 
for the heat flow equation can be performed for example, 
following Boadway’s [3] treatment of fluid flow problems. 
The equation for heat flow in a homogeneous medium in 
which the heat conductivity k and specific heat c may be 
functions of temperature Li, and density p, can be written as 


